These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Restriction landmark genome scanning method using isoschizomers (MspI/HpaII) for DNA methylation analysis.
    Author: Takamiya T, Hosobuchi S, Asai K, Nakamura E, Tomioka K, Kawase M, Kakutani T, Paterson AH, Murakami Y, Okuizumi H.
    Journal: Electrophoresis; 2006 Jul; 27(14):2846-56. PubMed ID: 16637018.
    Abstract:
    Restriction landmark genome scanning (RLGS) is a 2-DE of genomic DNA, which visualizes thousands of loci. In a conventional RLGS method for methylation analysis, we have used a methylation sensitive restriction enzyme, NotI as a landmark. However, it was unable to discriminate methylation polymorphism from sequence polymorphism. Here, we report an improved RLGS method to detect methylated sites directly. We employed isoschizomers, MspI and HpaII, that recognize the same sequence (CCGG) but have different methylation sensitivity. We carried out the RLGS analysis of Arabidopsis thaliana ecotype Columbia, and obtained a pair of spot patterns with MspI and HpaII. We detected 22 spots in both patterns. In comparison of them, 18% of the spots were polymorphic, which indicated the methylation of C(5m)CGG sites. Further analyses revealed an additional methylated site of NotI. Moreover, 52 and 54 restriction enzyme sites were also analyzed in two other ecotypes, Wassilewskija and Landsberg erecta, respectively. Consequently, 15% of the 52 common sites showed methylation polymorphism among the three ecotypes. The restriction sites analyzed in this study were located in or near genes, and contribute new data about the correlation between methylation status and gene expression. Therefore, this result strongly indicates that the improved RLGS method is readily applicable to practical analyses of methylation dynamics, and provides clues to the relationship between methylation and gene expression.
    [Abstract] [Full Text] [Related] [New Search]