These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Quantification of fatty acids in forages by near-infrared reflectance spectroscopy. Author: Foster JG, Clapham WM, Fedders JM. Journal: J Agric Food Chem; 2006 May 03; 54(9):3186-92. PubMed ID: 16637670. Abstract: Near-infrared reflectance spectroscopy (NIRS) was evaluated as a possible alternative to gas chromatography (GC) for the quantitative analysis of fatty acids in forages. Herbage samples from 11 greenhouse-grown forage species (grasses, legumes, and forbs) were collected at three stages of growth. Samples were freeze-dried, ground, and analyzed by GC and NIRS techniques. Half of the 195 samples were used to develop an NIRS calibration file for each of eight fatty acids, with the remaining half used as a validation data set. Spectral data, collected over a wavelength range of 1100-2498 nm, were regressed against GC data to develop calibration equations for lauric (C12:0), myristic (C14:0), palmitic (C16:0), stearic (C18:0), palmitoleic (C16:1), oleic (C18:1), linoleic (C18:2), and alpha-linolenic (C18:3) acids. Calibration equations had high coefficients of determination for calibration (0.93-0.99) and cross-validation (0.89-0.98), and standard errors of calibration and cross-validation were < 20% of the respective means. Simple linear regressions of NIRS results against GC data for the validation data set had r2 values ranging from 0.86 to 0.97. Regression slopes for C12:0, C14:0, C16:0, C18:0, C16:1, C18:2, and C18:3 were not significantly different (P = 0.05) from 1.0. The regression slope for C18:1 was 1.1. The ratio of standard error of prediction to standard deviation was > 3.0 for all fatty acids except C12:0 (2.6) and C14:0 (2.9). Validation statistics indicate that NIRS has high prediction ability for fatty acids in forages. Calibration equations developed using data for all plant materials accurately predicted concentrations of C16:0, C18:2, and C18:3 in individual plant species. Accuracy of prediction was less, but acceptable, for fatty acids (C12:0, C14:0, C18:0, C16:1, and C18:1) that were less prevalent.[Abstract] [Full Text] [Related] [New Search]