These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A G316A mutation of manganese lipoxygenase augments hydroperoxide isomerase activity: mechanism of biosynthesis of epoxyalcohols. Author: Cristea M, Oliw EH. Journal: J Biol Chem; 2006 Jun 30; 281(26):17612-23. PubMed ID: 16641090. Abstract: Lipoxygenases with R stereospecificity have a conserved Gly residue, whereas (S)-lipoxygenases have an Ala residue. Site-directed mutagenesis has shown that these residues control position and S/R stereospecificity of oxygenation. Recombinant Mn-LO was expressed in Pichia pastoris, and its conserved Gly-316 residue was mutated to Ala, Ser, Val, and Thr. The G316A mutant was catalytically active. We compared the catalytic properties of Mn-LO and the G316A mutant with 17:3n-3, 18:2n-6, 18:3n-3, and 19:3n-3 as substrates. Increasing the fatty acid chain length from C17 to C19 shifted the oxygenation by Mn-LO from the n-6 toward the n-8 carbon. The G316A mutant increased the oxygenation at the n-8 carbon of 17:3n-3 and at the n-10 carbon of the C17 and C18 fatty acids (from 1-2% to 7-11%). The most striking effect of the G316A mutant was a 2-, 7-, and 15-fold increase in transformation of the n-6 hydroperoxides of 19:3n-3, 18:3n-3, and 17:3n-3, respectively, to keto fatty acids and epoxyalcohols. The n-3 double bond was essential. An experiment under an oxygen-18 atmosphere showed that both oxygen atoms were retained in the epoxyalcohols. (R)-Hydroperoxides at n-6 of C17:3, 18:3, and 19:3 were transformed 5 times faster than S stereoisomers. The G316A mutant converted (13R)-hydroperoxylinolenic acid to 13-ketolinolenic acid (with an apparent K(m) of 0.01 mm) and to epoxyalcohols (viz. erythro- and threo-11-hydroxy-(12R,13R)-epoxy-(9Z,15Z)-octadecadienoic acids and one of the corresponding cis-epoxides as major products). A reducing lipoxygenase inhibitor stimulated the hydroperoxide isomerase activity, whereas a suicide-type lipoxygenase inhibitor reduced this activity. The n-3 double bond also appeared to influence the anaerobic formation of epoxyalcohols by Mn-LO, since 18:2n-6 and 18:3n-3 yielded different profiles of epoxyalcohols. Our results suggest that the G316A mutant augmented the hydroperoxide isomerase activity by positioning the hydroperoxy group at the n-6 carbon of n-3 fatty acids closer to the reduced catalytic metal.[Abstract] [Full Text] [Related] [New Search]