These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Language experience shapes fusiform activation when processing a logographic artificial language: an fMRI training study. Author: Xue G, Chen C, Jin Z, Dong Q. Journal: Neuroimage; 2006 Jul 01; 31(3):1315-26. PubMed ID: 16644241. Abstract: The significant role of the left midfusiform cortex in reading found in recent neuroimaging studies has led to the visual word form area (VWFA) hypothesis. This hypothesis suggests that years of experience reading native language change the visual expertise of this region to be especially sensitive to the visual form of native language. The present study aimed at testing this hypothesis by exploring the role of language experience in shaping the fusiform activation. We designed a logographic artificial language (LAL) using the visual form and pronunciation of Korean Hangul characters (but their correspondence was shuffled) and assigning arbitrary meanings to these characters. Twelve native Chinese Mandarin speakers (6 male and 6 female, 18 to 21 years old) with no prior knowledge of Korean language were trained in the visual form of these characters for 2 weeks, followed by 2 weeks each of phonological and semantic training. Behavioral data indicated that training was effective in increasing the efficiency of visual form processing and establishing the connections among visual form, sounds, and meanings. Imaging data indicated that at the pre-training stage, subjects showed stronger activation in the fusiform regions for LAL than for Chinese across both one-back visual matching task and the passive viewing task. Visual form training significantly decreased the activation of bilateral fusiform cortex and the left inferior occipital cortex, whereas phonological training increased activation in these regions, and the right fusiform remained more active after semantic training. Increased activations after phonological and semantic training were also evident in other regions involved in language processing. These findings thus do not seem to be consistent with the visual-expertise-induced-sensitivity hypothesis about fusiform regions. Instead, our results suggest that visual familiarity, phonological processing, and semantic processing all make significant but different contributions to shaping the fusiform activation.[Abstract] [Full Text] [Related] [New Search]