These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: JNK inhibitor SP600125 reduces COX-2 expression by attenuating mRNA in activated murine J774 macrophages. Author: Nieminen R, Lahti A, Jalonen U, Kankaanranta H, Moilanen E. Journal: Int Immunopharmacol; 2006 Jun; 6(6):987-96. PubMed ID: 16644485. Abstract: Inducible prostaglandin synthase (cyclooxygenase-2, COX-2) is highly expressed in inflammation. The signaling mechanisms involved in the up-regulation of COX-2 are not known in detail. In the present study we investigated the role of c-Jun NH2-terminal kinase (JNK), a member of the mitogen-activated protein kinase (MAPK) family in COX-2 expression and prostaglandin (PG) E2 production in murine J774 macrophages activated by bacterial lipopolysaccharide (LPS). LPS caused a transient activation of JNK which was followed by increased COX-2 expression. Anthra(1,9-cd)pyrazol-6(2H)-one (SP600125), an inhibitor of JNK, inhibited phosphorylation of c-Jun with an IC50 of 5-10 microM. At the same concentrations SP600125 suppressed also LPS-induced COX-2 protein levels and PGE2 production. SP600125 did not alter LPS-induced COX-2 mRNA levels when measured 3 h after addition of LPS, whereas mRNA levels were significantly reduced in SP600125-treated cells when measured 24 h after addition of LPS. LPS-induced COX-2 mRNA levels reduced faster in cells treated with SP600125 than in control cells. Cycloheximide (that is known to activate JNK) enhanced COX-2 expression and its effect was inhibited by SP600125. The present results suggest that JNK pathway is involved in the up-regulation of COX-2 expression possibly by a mechanism related to the stability of COX-2 mRNA.[Abstract] [Full Text] [Related] [New Search]