These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: L-cysteine inhibits insulin release from the pancreatic beta-cell: possible involvement of metabolic production of hydrogen sulfide, a novel gasotransmitter.
    Author: Kaneko Y, Kimura Y, Kimura H, Niki I.
    Journal: Diabetes; 2006 May; 55(5):1391-7. PubMed ID: 16644696.
    Abstract:
    Hydrogen sulfide (H(2)S) was historically recognized as a toxic gas generated by natural resources. However, its enzymatic production from L-cysteine has recently been demonstrated in mammals. Cystathionine beta-synthase and cystathionine gamma-lyase, both of which can produce H(2)S, were expressed in mouse pancreatic islet cells and the beta-cell line, MIN6. L-cysteine and the H(2)S donor NaHS inhibited glucose-induced insulin release from islets and MIN6 cells. These inhibitory effects were reproduced when insulin release was stimulated by alpha-ketoisocaproate, tolbutamide, or high K+. L-cysteine and NaHS inhibited glucose-potentiated insulin release in the copresence of diazoxide and high K+. Real-time imaging of intracellular Ca2+ concentration ([Ca2+](i)) demonstrated that both L-cysteine and NaHS reversibly suppressed glucose-induced [Ca2+](i) oscillation in a single beta-cell without obvious changes in the mean value. These substances inhibited Ca2+ - or guanosine 5'-0-3-thiotriphosphate-induced insulin release from islets permeabilized with streptolysin-O. L-cysteine and NaHS reduced ATP production and attenuated glucose-induced hyperpolarization of the mitochondrial membrane potential. Finally, L-cysteine increased H(2)S content in MIN6 cells. We suggest here that L-cysteine inhibits insulin release via multiple actions on the insulin secretory process through H(2)S production. Because the activities of H(2)S-producing enzymes and the tissue H(2)S contents are known to increase under diabetic conditions, the inhibition may participate in the deterioration of insulin release in this disease.
    [Abstract] [Full Text] [Related] [New Search]