These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The N-Terminal A/B domain of the thyroid hormone receptor-beta2 isoform influences ligand-dependent recruitment of coactivators to the ligand-binding domain.
    Author: Tian H, Mahajan MA, Wong CT, Habeos I, Samuels HH.
    Journal: Mol Endocrinol; 2006 Sep; 20(9):2036-51. PubMed ID: 16645037.
    Abstract:
    Thyroid hormone receptors (TRs), expressed as TRalpha1, TRbeta1, and TRbeta2 isoforms, are members of the steroid hormone nuclear receptor gene superfamily, which comprises ligand-dependent transcription factors. The TR isoforms differ primarily in their N-terminal (A/B) domains, suggesting that the A/B regions mediate distinct transcriptional activation functions in a cell type-dependent or promoter-specific fashion. The nuclear receptor ligand-binding domain (LBD) undergoes a conformational change upon ligand binding that results in the recruitment of coactivators to the LBD. For glucocorticoid receptor and estrogen receptor-alpha, the same coactivator can contact both the LBD and A/B domains, thus leading to enhanced transcriptional activation. Very little is known regarding the role of the A/B domains of the TR isoforms. The A/B domain of TRbeta2 exhibits higher ligand-independent transcriptional activity than the A/B regions of TRalpha1 or TRbeta1. Thus, we examined the role of the A/B domain and the LBD of rat TRbeta2 in integrating the transcriptional activation function of the A/B and LBD domains by different coactivators. Both domains are essential for a productive functional interaction with cAMP response element-binding protein (CREB)-binding protein (CBP), and we found that CBP binds to the A/B domain of TRbeta2 in vitro. In contrast, steroid receptor coactivator-1a (SRC-1a) interacts strongly with the LBD but not the A/B domain. The coactivator NRC (nuclear receptor coactivator) interacts primarily with the LBD, although a weak interaction with the A/B domain further enhances ligand-dependent binding with TRbeta2. Our studies document the interplay between the A/B domain and the LBD of TRbeta2 in recruiting different coactivators to the receptor. Because NRC and SRC-1a bind CBP, and CBP enhances ligand-dependent activity, our studies suggest a model in which coactivator recruitment of NRC (or SRC-1a) occurs primarily through the LBD whereas the complex is further stabilized through an interaction of CBP with the N terminus of TRbeta2.
    [Abstract] [Full Text] [Related] [New Search]