These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Propofol decreases myofilament Ca2+ sensitivity via a protein kinase C-, nitric oxide synthase-dependent pathway in diabetic cardiomyocytes.
    Author: Wickley PJ, Shiga T, Murray PA, Damron DS.
    Journal: Anesthesiology; 2006 May; 104(5):978-87. PubMed ID: 16645450.
    Abstract:
    BACKGROUND: The authors' objective was to assess the role of protein kinase C (PKC) and nitric oxide synthase (NOS) in mediating the effects of propofol on diabetic cardiomyocyte contractility, intracellular free Ca2+ concentration ([Ca2+]i), and myofilament Ca2+ sensitivity. METHODS: Freshly isolated ventricular myocytes were obtained from normal and diabetic rat hearts. [Ca2+]i and cell shortening were simultaneously measured in electrically stimulated, ventricular myocytes using fura-2 and video-edge detection, respectively. Actomyosin adenosine triphosphatase activity and troponin I (TnI) phosphorylation were assessed in [32P]orthophosphate-labeled myofibrils. Western blot analysis was used to assess expression of PKC and NOS. RESULTS: Propofol (10 microM) decreased peak shortening by 47 +/- 6% with little effect on peak [Ca2+]i (92 +/- 5% of control) in diabetic myocytes. Maximal actomyosin adenosine triphosphatase activity was reduced by 43 +/- 7% and TnI phosphorylation was greater (32 +/- 6%) in diabetic myofibrils compared with normal. Propofol reduced actomyosin adenosine triphosphatase activity by 17 +/- 7% and increased TnI phosphorylation in diabetic myofibrils. PKC inhibition prevented the propofol-induced increase in TnI phosphorylation and decrease in shortening. Expression of PKC-alpha, PKC-delta, PKC-epsilon, and constitutive NOS were up-regulated and inducible NOS was expressed in diabetic cardiomyocytes. NOS inhibition attenuated the propofol-induced decrease in shortening. CONCLUSION: Myofilament Ca2+ sensitivity and, to a lesser extent, peak [Ca2+]i are decreased in diabetic cardiomyocytes. Increases in PKC and NOS expression in combination with TnI phosphorylation seem to contribute to the decrease in [Ca2+]i and myofilament Ca2+ sensitivity. Propofol decreases [Ca2+]i and shortening via a PKC-, NOS-dependent pathway.
    [Abstract] [Full Text] [Related] [New Search]