These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Training-stage related neuronal plasticity in limbic thalamus and cingulate cortex during learning: a possible key to mnemonic retrieval. Author: Gabriel M, Vogt BA, Kubota Y, Poremba A, Kang E. Journal: Behav Brain Res; 1991 Dec 20; 46(2):175-85. PubMed ID: 1664730. Abstract: This study is part of an ongoing project concerned with the analysis of the neural substrates of discriminative avoidance learning in rabbits. Multi-unit activity was recorded in 5 anterior and lateral thalamic nuclei and in 4 layers of 2 posterior cingulate cortical areas (29c/d and 29b) during learning. The rabbits learned to step in response to a warning tone to avoid a foot-shock, and to ignore a different tone not followed by shock. Excitatory training-induced unit activity (TIA, increased tone-elicited activity during training relative to a pretraining session with unpaired tone-shock presentations) and/or discriminative TIA (greater discharges to the warning than to the safe tone) developed during training in 11 of the 13 areas. Discriminative TIA in the thalamic nuclei increased monotonically as learning occurred. Anterodorsal (AD) thalamic excitatory TIA peaked in an early stage (the first session of training), laterodorsal thalamic and parvocellular anteroventral (AVp) excitatory TIA peaked in an intermediate stage (the session of the first behavioral discrimination), and magnocellular anteroventral (AVm) and anteromedial (AM) thalamic excitatory TIA peaked in a late stage (the session in which asymptotic behavioral discrimination first occurred). The excitatory TIA in these nuclei declined as training continued beyond the stage in which the peak occurred. Peaks of excitatory TIA developed in area 29c/d of posterior cingulate cortex in the early (layer IV), intermediate (layers I-III and V) and late (layer IV) training stages, as just defined. Only layer IV in area 29b of posterior cingulate cortex exhibited a peak of excitatory TIA, which occurred in the early and intermediate training stages. As in limbic thalamus, discriminative TIA increased monotonically over training stages in layers V and VI of areas 29c/d and in layer VI of area 29b. However, layers I-III and IV in area 29c exhibited peak discriminative TIA in the intermediate and late training stages, respectively. Lesion studies indicate that limbic thalamus and cingulate cortex are essential for learning. The peaks represent a unique topographic pattern of thalamic and cortical excitation elicited by the CS+. It is proposed that the peaks constitute a retrieval pattern, i.e. a unique topographic array of excitation. This pattern encodes the spatio-temporal context which defines the learning situation and is necessary for recall and output of the learned response.[Abstract] [Full Text] [Related] [New Search]