These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CYP2C76, a novel cytochrome P450 in cynomolgus monkey, is a major CYP2C in liver, metabolizing tolbutamide and testosterone.
    Author: Uno Y, Fujino H, Kito G, Kamataki T, Nagata R.
    Journal: Mol Pharmacol; 2006 Aug; 70(2):477-86. PubMed ID: 16648389.
    Abstract:
    Monkeys are widely used as a primate model to study drug metabolism because they generally show a metabolic pattern similar to humans. However, the paucity of information on cytochrome P450 (P450) genes has hampered a deep understanding of drug metabolism in the monkey. In this study, we report identification of the CYP2C76 cDNA newly identified in cynomolgus monkey and characterization of this CYP2C along with cynomolgus CYP2C20, CYP2C43, and CYP2C75. The CYP2C76 cDNA contains the open reading frame encoding a protein of 489 amino acids that are only approximately 80% identical to any human or monkey P450 cDNAs. Gene and protein expression of CYP2C76 was confirmed in the liver of cynomolgus and rhesus monkeys but not in humans or the great apes. Moreover, CYP2C76 is located at the end of the CYP2C gene cluster in the monkey genome, the region of which corresponds to the intergenic region adjacent to the CYP2C cluster in the human genome, strongly indicating that this gene does not have the ortholog in humans. Among the four CYP2C genes expressing predominantly in the liver, the expression level of CYP2C76 was the greatest, suggesting that CYP2C76 is a major CYP2C in the monkey liver. Assays for the capacity of CYP2C76 to metabolize drugs using several substrates typical for human CYP2Cs revealed that CYP2C76 showed unique metabolic activity. These results suggest that CYP2C76 contributes to overall drug-metabolizing activity in the monkey liver and might account for species difference occasionally seen in drug metabolism between monkeys and humans.
    [Abstract] [Full Text] [Related] [New Search]