These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interleukin-12-deficient mice are at greater risk of UV radiation-induced skin tumors and malignant transformation of papillomas to carcinomas.
    Author: Meeran SM, Mantena SK, Meleth S, Elmets CA, Katiyar SK.
    Journal: Mol Cancer Ther; 2006 Apr; 5(4):825-32. PubMed ID: 16648552.
    Abstract:
    Solar UV radiation-induced immunosuppression is a risk factor for nonmelanoma skin cancer. Interleukin (IL)-12 has been shown to possess antitumor activity and inhibit the immunosuppressive effects of UV radiation in mice. In this study, we generated IL-12 knockout (KO) mice on a C3H/HeN background to characterize the role of IL-12 in photocarcinogenesis. After exposure of the mice to UVB (180 mJ/cm2) radiation thrice a week for 35 weeks, the development of UV-induced tumors was more rapid and the tumor multiplicity and tumor size were significantly higher in IL-12 KO mice than their wild-type (WT) counterparts (P < 0.05-0.001). Moreover, the malignant transformation of UVB-induced papillomas to carcinomas was higher in IL-12 KO mice in terms of carcinoma incidence (55%, P < 0.001), carcinoma multiplicity (77%, P < 0.001), and carcinoma size (81%, P < 0.001). As IL-12 has the ability to repair UV-induced DNA damage, we determined this effect in our in vivo IL-12 KO mouse model. We found that UVB-induced DNA damage in the form of cyclobutane pyrimidine dimers was removed or repaired more rapidly in WT mice than IL-12 KO mice. Similarly, the UVB-induced sunburn cell formation is primarily a consequence of DNA damage. It was observed that UVB-induced sunburn cells were repaired rapidly in WT mice compared with IL-12 KO mice. The rapid removal or repair of UV-induced cyclobutane pyrimidine dimers or sunburn cells will result in reduced risk of photocarcinogenesis. Taken together, our data show that IL-12 deficiency is associated with the greater risk of photocarcinogenesis in mice, and this may be due to reduction in damaged DNA repair ability.
    [Abstract] [Full Text] [Related] [New Search]