These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Concentration-dependent effects of anticonvulsant enaminone methyl 4-(4'-bromophenyl)aminocyclohex-3-en-6-methyl-2-oxo-1-oate on neuronal excitability in vitro.
    Author: Ananthalakshmi KV, Edafiogho IO, Kombian SB.
    Journal: Neuroscience; 2006 Aug 11; 141(1):345-56. PubMed ID: 16650601.
    Abstract:
    Enaminones are a novel group of compounds some of which possess anticonvulsant activity in in vivo animal models of seizures. We recently reported that some enaminones, including methyl 4-(4'-bromophenyl)aminocyclohex-3-en-6-methyl-2-oxo-1-oate, depress glutamate-mediated excitatory synaptic transmission and that this may contribute to their anticonvulsant activity [Kombian SB, Edafiogho IO, Ananthalakshmi KVV (2005) Anticonvulsant enaminones depress excitatory synaptic transmission in the rat brain by enhancing extracellular GABA levels. Br J Pharmacol 145:945-953]. Here we studied the effects of methyl 4-(4'-bromophenyl)aminocyclohex-3-en-6-methyl-2-oxo-1-oate, on the excitability of male rat (Sprague-Dawley) nucleus accumbens and hippocampal cells in vitro using whole-cell patch clamp recording techniques. At low, therapeutically relevant concentrations (0.3-10 microM), methyl 4-(4'-bromophenyl)aminocyclohex-3-en-6-methyl-2-oxo-1-oate reversibly suppressed action potential firing rate in a concentration-dependent manner. This action potential suppression was present when GABA(A), GABA(B) and glutamate receptors were blocked with their antagonists. Furthermore, methyl 4-(4'-bromophenyl)aminocyclohex-3-en-6-methyl-2-oxo-1-oate suppressed tetrodotoxin-sensitive sodium currents in these cells. At concentrations >/=100 microM, it induced inward currents and increased action potential firing frequency. The inward currents were without changes in input resistance and did not reverse polarity between -120 and -40 mV. These currents were independent of extracellular potassium, but were absent when extracellular sodium was replaced by choline and finally, were occluded by pretreatment with ouabain (200 microM). We conclude that methyl 4-(4'-bromophenyl)aminocyclohex-3-en-6-methyl-2-oxo-1-oate directly inhibits action potential firing at therapeutically relevant concentrations by suppressing tetrodotoxin-sensitive sodium currents, while inducing an ouabain-sensitive current at high concentrations to excite neurons. These two actions of methyl 4-(4'-bromophenyl)aminocyclohex-3-en-6-methyl-2-oxo-1-oate on neuronal excitability would have therapeutic implications in future clinical use of enaminones as anticonvulsants in seizure disorders.
    [Abstract] [Full Text] [Related] [New Search]