These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus.
    Author: Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY.
    Journal: Brain Res; 2006 May 23; 1090(1):182-9. PubMed ID: 16650838.
    Abstract:
    Increased production of reactive oxygen species (ROS) following cerebral ischemia-reperfusion (I/R) is an important underlying cause for neuronal injury leading to delayed neuronal death (DND). In this study, apocynin, a specific inhibitor for NADPH oxidase, was used to test whether suppression of ROS by the NADPH oxidase inhibitor can protect against ischemia-induced ROS generation and decrease DND. Global cerebral ischemia was induced in gerbils by a 5-min occlusion of bilateral common carotid arteries (CCA). Using measurement of 4-hydroxy-2-nonenal (HNE) as a marker for lipid peroxidation, apocynin (5 mg/kg body weight) injected i.p. 30 min prior to ischemia significantly attenuated the early increase in HNE in hippocampus measured at 3 h after I/R. Apocynin also protected against I/R-induced neuronal degeneration and DND, oxidative DNA damage, and glial cell activation. Taken together, the neuroprotective effects of apocynin against ROS production during early phase of I/R and subsequent I/R-induced neuronal damage provide strong evidence that inhibition of NADPH oxidase could be a promising therapeutic mechanism to protect against stroke damage in the brain.
    [Abstract] [Full Text] [Related] [New Search]