These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Partitioning of malate dehydrogenase isoenzymes into glyoxysomes, mitochondria, and chloroplasts. Author: Gietl C. Journal: Plant Physiol; 1992 Oct; 100(2):557-9. PubMed ID: 16653028. Abstract: Malate dehydrogenase isoenzymes catalyzing the oxidation of malate to oxaloacetate are highly active enzymes in mitochondria, in peroxisomes, in chloroplasts, and in the cytosol. Determination of the primary structure of the isoenzymes has disclosed that they are encoded in different nuclear genes. All three organelle-targeted malate dehydrogenases are synthesized with an amino terminal extension that is cleaved off in connection with the import of the enzyme precursor into the organelle. The sequence of the 27 amino acids of the mitochondrial transit peptide is unrelated to the 37-residue glyoxysomal transit peptide, which in turn is entirely different in sequence from the 57-residue chloroplastic transit peptide. With the exception of malate dehydrogenase and 3-ketoacyl thiolase, peroxisomal enzymes are synthesized without transit peptides and are frequently translocated into the organelle with a peroxisomal targeting signal consisting of a conserved tripeptide at the carboxy terminus of the protein. Based on the observation that this tripeptide (Ala-His-Leu) occurs in the transit peptides of glyoxysomal malate dehydrogenase and peroxisomal 3-ketoacyl thiolase, the possible significance of amino terminal transit peptides for peroxisome import is discussed.[Abstract] [Full Text] [Related] [New Search]