These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Slow degradation of the d1 protein is related to the susceptibility of low-light-grown pumpkin plants to photoinhibition.
    Author: Tyystjärvi E, Ali-Yrkkö K, Kettunen R, Aro EM.
    Journal: Plant Physiol; 1992 Nov; 100(3):1310-7. PubMed ID: 16653122.
    Abstract:
    Photoinhibition of photosystem II (PSII) electron transport and subsequent degradation of the D1 protein were studied in pumpkin (Cucurbita pepo L.) leaves developed under high (1000 mumol m(-2) s(-1)) and low (80 mumol m(-2) s(-1)) photon flux densities. The low-light leaves were more susceptible to high light. This difference was greatly diminished when illumination was performed in the presence of chloramphenicol, indicating that a poor capacity to repair photodamaged PSII centers is decisive in the susceptibility of low-light leaves to photoinhibition. In fact, the first phases of the repair cycle, degradation and removal of photodamaged D1 protein from the reaction center complex, occurred slowly in low-light leaves, whereas in high-light leaves the degradation of the D1 protein more readily followed photoinhibition of PSII electron transport. A modified form of the D1 protein, with slightly slower electrophoretic mobility than the original D1, accumulated in the appressed thylakoid membranes of low-light leaves during illumination and was subsequently degraded only slowly.
    [Abstract] [Full Text] [Related] [New Search]