These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chronic effect of [D-Pen2,D-Pen5]enkephalin on rat brain opioid receptors.
    Author: Tao PL, Tsai CL, Chang LR, Loh HH.
    Journal: Eur J Pharmacol; 1991 Aug 29; 201(2-3):209-14. PubMed ID: 1665782.
    Abstract:
    In previous studies, we have demonstrated that chronic etorphine or [D-Ala2,D-Leu5]enkephalin (DADLE) treatment of rats results in the reduction of mu- and delta-opioid receptor binding activities as tolerance develops. As both etorphine and DADLE are relatively non-specific opioid ligands, interacting with both mu- and delta-receptors, these studies could not determine whether down-regulation of a specific receptor type occurs. Therefore, in the present studies, animals were rendered tolerant to the delta-opioid receptor-selective agonist [D-Pen2,D-Pen5]enkephalin (DPDPE), and receptor binding activities were measured. Treating Sprague-Dawley rats with increasing doses of DPDPE (80-160-240-320 micrograms/kg) i.c.v. for 1 to 4 days resulted in a time-dependent increase in the AD50 of DPDPE to elicit an antinociceptive response. When delta-receptor binding was determined by using [3H]DPDPE, a 40-50% decrease in binding in the midbrain and cortex, and 25-35% decrease in binding in the striatum were observed after 3 or 4 days of DPDPE treatment. Scatchard analysis of the [3H]DPDPE saturation binding data revealed a decrease in Bmax values and no significant change in Kd values. To our surprise, when mu-receptor binding was determined by using [3H]Tyr-D-Ala-Gly-MePhe-Gly-ol (DAMGO), a 10-15% decrease in binding was also observed in the midbrain and cortex after 4 days of DPDPE treatment. Our conclusion is that chronic DPDPE treatment preferentially reduces delta-opioid receptor binding activity. Its minor effect on the mu-opioid receptor maybe due to an interaction between delta cx and mu cx binding sites.
    [Abstract] [Full Text] [Related] [New Search]