These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Starch Degradation Metabolism towards Sucrose Synthesis in Germinating Araucaria araucana Seeds. Author: Cardemil L, Varner JE. Journal: Plant Physiol; 1984 Dec; 76(4):1047-54. PubMed ID: 16663947. Abstract: As starch is the main seed reserve material in both species of Araucaria of South America, A. araucana and A. angustifolia, it is important to understand starch breakdown in both embryo and megagametophyte tissues of Araucaria seeds. Sugar analysis by thin layer chromatography indicates that sucrose is the main sugar produced in both tissues. Enzyme reactions coupled to benzidine oxidation indicate that sucrose is the main sugar moved from the megagametophyte to the growing regions of the embryo via the cotyledons.Phosphorylase was detected in both embryo and megagametophyte tissues by the formation of [(32)P]glucose-1-P and by formation of [(14)C] amylopectin from [(14)C]glucose-1-P. The enzyme activity increases 5-fold in both embryo and gametophyte to a peak 18 hours after the start of imbibition. Debranching enzyme, alpha-glucosidase, and hexokinase are also present in both embryonic and megagametophytic tissues.Branched glucan oligosaccharides accumulate during this time, reaching a maximum 40 hours after imbibition starts, and decline after germination occurs.The pattern of activity of the enzymes studied in this work suggests that starch degradation is initiated by alpha-amylase and phosphorylase in the embryo and by phosphorylase mainly in the megagametophyte. Sucrose-P synthase seems to be the enzyme responsible for sucrose synthesis in both tissues.[Abstract] [Full Text] [Related] [New Search]