These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intraorganellar distribution of superoxide dismutase in plant peroxisomes (glyoxysomes and leaf peroxisomes).
    Author: Sandalio LM, Del Río LA.
    Journal: Plant Physiol; 1988 Dec; 88(4):1215-8. PubMed ID: 16666446.
    Abstract:
    The intraorganellar distribution of superoxide dismutase (SOD) (EC 1.15.1.1) in two types of plant peroxisomes (glyoxysomes and leaf peroxisomes) was studied by determinations of SOD latency in intact organelles and by solubilization assays with 0.2 molar KCl. Glyoxysomes were purified from watermelon (Citrullus vulgaris Schrad.) cotyledons, and their integrity, calculated on the basis of glyoxysomal marker enzymes, was about 60%. Under the same conditions, the latency of SOD activity determined in glyoxysomes was 40%. The difference between glyoxysomal intactness and SOD latency was very close to the percentage of isozyme Mn-SOD previously determined in glyoxysomes (LM Sandalio, LA Del Río 1987 J Plant Physiol 127: 395-409). In matrix and membrane fractions of glyoxysomes, SOD exhibited a solubilization pattern very similar to catalase, a typical soluble enzyme of glyoxysomes. The analysis of the distribution of individual SOD isozymes in glyoxysomal fractions treated with KCl showed that Cu,Zn-SOD II, the major SOD isozyme in glyoxysomes, was present in the soluble fraction of these organelles, whereas Mn-SOD was bound to the glyoxysomal membrane. These data in conjunction with those of latency of SOD activity in intact glyoxysomes suggest that Mn-SOD is bound to the external side of the membrane of glyoxysomes. On the other hand, in intact leaf peroxisomes where only a Mn-containing SOD is present (LM Sandalio, JM Palma, LA Del Río 1987 Plant Sci 51: 1-8), this isozyme was found in the peroxisomal matrix. The physiological meaning of SOD localization in matrix and membrane fractions of glyoxysomes and the possibility of new roles for plant peroxisomes in cellular metabolism related to activated oxygen species is discussed.
    [Abstract] [Full Text] [Related] [New Search]