These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enzymes Catalyzing the Reversible Conversion of Fructose-6-Phosphate and Fructose-1,6-Bisphosphate in Maize (Zea mays L.) Kernels. Author: Tobias RB, Boyer CD, Shannon JC. Journal: Plant Physiol; 1992 May; 99(1):140-5. PubMed ID: 16668841. Abstract: The significance of the glycolytic and gluconeogenic conversion of fructose-6-phosphate and fructose-1,6-bisphosphate on sugar metabolism was investigated in maize (Zea mays L.) kernels. Maximum extractable activities of the pyrophosphate (PPi) dependent phosphofructokinase, fructose-1,6-bisphosphatase, and the ATP-dependent phosphofructokinase were measured in normal and four maize genotypes, which accumulate relatively more sugars and less starch, to determine how these enzymes are affected by the genetic lesions. Normal endosperm accumulated more dry matter than the high sugar/low starch genotypes, but protein contents did not differ greatly among the genotypes. Mutation of several starch biosynthetic enzymes had little impact on the activities of PPi-dependent phosphofructokinase, fructose-1,6-bisphosphatase, and ATP-dependent phosphofructokinase, despite the altered capacity of the cell to synthesize starch. The PPi-dependent phosphofructokinase appeared to be more active toward glycolysis in all genotypes studied. Activity of the PPi-dependent phosphofructokinase in shrunken (low sucrose synthase genotype) did not differ from the activity in other genotypes, suggesting that the gluconeogenic production of PPi may not be the primary role of the enzyme. As expected, shrunken kernels contained more sugars and less starch than normal kernels throughout kernel development except at the very early stages. Developmental profiles of normal kernels also showed marked changes in the PPi-dependent phosphofructokinase activity, whereas the level of ATP-dependent phosphofructokinase activity remained relatively steady during kernel development. In addition, the ATP-dependent phosphofructokinase, and not the PPi-dependent phosphofructokinase, appeared to correlate more closely with respiration rate. These findings suggest that glycolysis catalyzed by the ATP-dependent phosphofructokinase may serve primarily to support energy production, and glycolysis catalyzed by the PPi-dependent phosphofructokinase may contribute mainly to generation of biosynthetic intermediates.[Abstract] [Full Text] [Related] [New Search]