These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Resource-dependent dispersal and the speed of biological invasions.
    Author: Dwyer G, Morris WF.
    Journal: Am Nat; 2006 Feb; 167(2):165-76. PubMed ID: 16670978.
    Abstract:
    Many mobile organisms exhibit resource-dependent movement in which movement rates adjust to changes in local resource densities through changes in either the probability of moving or the distance moved. Such changes may have important consequences for invasions because reductions in resources behind an invasion front may cause higher dispersal while simultaneously reducing population growth behind the front and thus lowering the number of dispersers. Intuiting how the interplay between population growth and dispersal affects invasions is difficult without mathematical models, yet most models assume dispersal rates are constant. Here we present spatial-spread models that allow for consumer-resource interactions and resource-dependent dispersal. Our results show that when resources affect the probability of dispersal, then the invasion dynamics are no different than if resources did not affect dispersal. When resources instead affect the distance dispersed, however, the invasion dynamics are strongly affected by the strength of the consumer-resource interaction, and population cycles behind the wave front lead to fluctuating rates of spread. Our results suggest that for actively dispersing invaders, invasion dynamics can be determined by species interactions. More practically, our work suggests that reducing invader densities behind the front may be a useful method of slowing an invader's rate of spread.
    [Abstract] [Full Text] [Related] [New Search]