These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Performance at high pedaling cadences in well-trained cyclists.
    Author: Mora-Rodriguez R, Aguado-Jimenez R.
    Journal: Med Sci Sports Exerc; 2006 May; 38(5):953-7. PubMed ID: 16672850.
    Abstract:
    PURPOSE: This study was conducted to determine the effect of high pedaling cadences on maximal cycling power output (W(max)). METHODS: Nine well-trained cyclists performed a continuous, incremental cycle-ergometer test to exhaustion (25 W increases every 3 min) either at 80, 100, or 120 rpm on three different occasions. RESULTS: W(max) was approximately 9% lower during 120 rpm in comparison with 80 and 100 rpm (335 +/- 9, 363 +/- 7, and 370 +/- 12 W, respectively; P < 0.05). During 120 rpm, ventilation rate (V(E)) increased above the increases in expired CO(2), which reduced the power output (PO) at the ventilatory anaerobic threshold (VT(2)) by 11% (P < 0.05). Gross efficiency (GE) did not differ among trials. At 120 rpm, capillary blood lactate concentration ([Lac]) increased above the 80-rpm trial (5.3 +/- 1.2 vs 3.0 +/- 0.7 mM at 300 W; P < 0.05), although pH was not reduced. At 120 rpm, expired CO(2) increased and reduced blood bicarbonate concentration ([HCO(3)(-)]) was reduced, maintaining blood pH similar to the other trials. CONCLUSION: A high pedaling cadence (i.e., 120 rpm) reduces performance (i.e., W(max)) and anaerobic threshold during an incremental test in well-trained cyclists. The data suggest that ventilatory anaerobic threshold (VT(2)) is a sensitive predictor of optimal pedaling cadence for performance, whereas blood pH or efficiency is not.
    [Abstract] [Full Text] [Related] [New Search]