These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dielectric spectroscopy of fresh fruit and vegetable tissues from 10 to 1800 MHz.
    Author: Nelson SO.
    Journal: J Microw Power Electromagn Energy; 2005; 40(1):31-47. PubMed ID: 16673832.
    Abstract:
    Dielectric spectroscopy data from measurements on tissue samples of nine fresh fruits and vegetables were used to study their dielectric behavior over the frequency range from 10 MHz to 1.8 GHz at 5 to 65 degrees C. Dielectric constant and loss-factor data are presented graphically for apple, avocado, banana, cantaloupe, carrot, cucumber, grape, orange, and potato, showing dielectric constants ranging from values of several hundred at 10 MHz to less than 100 at 1.8 GHz and loss factors on the order of one thousand at 10 MHz to less than 20 at 1.8 GHz. The dielectric loss factor increased consistently with increasing temperature at frequencies below 1 GHz. The dielectric constant increased with temperature at lower frequencies, but it decreased with temperature at the higher frequencies. This reversal of the sign of the temperature coefficient occurred at some point in the frequency range between 20 and 120 MHz where the temperature dependence of the dielectric constant was zero. At frequencies below this point, ionic conduction dominates the dielectric behavior, but above that point dipolar relaxation appears to control the behavior. Multiple linear regression provided equations for calculation of the loss factor in the frequency range from 10 to 300 MHz at temperatures from 5 to 65 degrees C. The data provide new information useful in understanding dielectric heating behavior and evaluating dielectric properties of such agricultural products for quality sensing applications.
    [Abstract] [Full Text] [Related] [New Search]