These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phase behavior, interfacial composition and thermodynamic properties of mixed surfactant (CTAB and Brij-58) derived w/o microemulsions with 1-butanol and 1-pentanol as cosurfactants and n-heptane and n-decane as oils.
    Author: Mitra RK, Paul BK, Moulik SP.
    Journal: J Colloid Interface Sci; 2006 Aug 15; 300(2):755-64. PubMed ID: 16677663.
    Abstract:
    Phase diagrams of pseudo-quaternary systems of cetyltrimethylammonium bromide (CTAB)/polyoxyethylene(20)cetyl ether (Brij-58)/water/1-butanol (or 1-pentanol)/n-heptane (or n-decane) at fixed omega (=[water]/[surfactant]) of 55.6 were constructed at different temperatures (293, 303, 313, and 323 K) and different mole fraction compositions of Brij-58 (X(Brij-58)=0, 0.5, and 1.0 in CTAB + Brij-58 mixture). Pure CTAB stabilized systems produced larger single-phase domains than pure Brij-58 stabilized systems. Increasing temperature increased the single-phase domain in the Brij-58 stabilized systems, whereas the domain decreased in the CTAB stabilized systems. For mixed surfactant systems (with X(Brij)=0.5) negligible influence of temperature in the studied range of 293 to 323 K on the phase behavior was observed. Interfacial compositions of the mixed microemulsion systems at different temperature and different compositions were evaluated by the dilution method. The n(a)(i) (number of moles of alcohol at the interface) and n(a)(o) (number of moles of alcohol in the oil phase) determined from dilution experiments were found to decrease and increase respectively for CTAB stabilized systems, whereas an opposite trend was witnessed for Brij-58 stabilized systems. The energetics of transfer of cosurfactants from oil to the interface were found to be exothermic and endothermic for CTAB and Brij-58 stabilized systems, respectively. At equimolar composition of CTAB and Brij-58, the phase diagrams were temperature insensitive, so that the enthalpy of the aforesaid transfer process was zero.
    [Abstract] [Full Text] [Related] [New Search]