These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxygen consumption and metabolite concentrations during transitions between different work intensities in heart. Author: Korzeniewski B. Journal: Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1466-74. PubMed ID: 16679405. Abstract: Steady-state metabolite (ADP, ATP, P(i), PCr, and NADH) concentrations usually differ little between different workloads with significantly different oxygen consumption rates in the heart. However, during transitions between steady states, metabolite concentrations may in some cases change transiently, exhibiting a significant overshoot or undershoot, whereas in other cases they approach near-exponentially new steady-state values. Oxygen consumption rate usually reaches the new steady-state value very quickly (within a few seconds). The present in silico studies, performed using a previously developed computer model of oxidative phosphorylation in the heart, demonstrate that such a behavior of the oxidative phosphorylation system can be reproduced only under the assumption that ATP usage, substrate dehydrogenation, and (particular steps of) oxidative phosphorylation are directly activated to a similar extend by some cytosolic factor/mechanism during transition from low work to high work (the so-called parallel-activation mechanism). Computer simulations show that some differences observed between different experimental systems can be explained by a slightly different balance of the activation of particular components of the system and/or by a delay in time of the activation/inactivation of substrate dehydrogenation and oxidative phosphorylation during low-to-high and high-to-low work transitions. Thus the presented theoretical approach offers a general idea that is able to unify, at least semiquantitatively, different experimental data available in the literature.[Abstract] [Full Text] [Related] [New Search]