These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of core diameter and surface treatment on the retention of resin composite cores to prefabricated endodontic posts. Author: Artopoulou II, O'Keefe KL, Powers JM. Journal: J Prosthodont; 2006; 15(3):172-9. PubMed ID: 16681499. Abstract: PURPOSE: With advances in adhesive dentistry and current emphasis on esthetic restorations, dowel systems have been developed to take advantage of these new techniques. Of interest when using these systems is the interaction between core materials and post materials. This investigation compared the tensile retentive force of two resin composite core materials to two metallic and one non-metallic prefabricated endodontic posts. Two dimensions of core build-up and two post-surface treatments were tested. MATERIALS AND METHODS: One hundred twenty posts (stainless steel, titanium alloy, and glass fiber-impregnated resin) were secured in a jig with 4 mm of the post extending into a cylindrical matrix. The matrix formed cylinders with diameters of 3 and 5 mm into which resin composite was inserted. The posts were treated or not treated with a bonding agent. After storage for 24 hours at 100% humidity, five specimens per condition were tested in an Instron testing machine at a crosshead speed of 0.5 mm/min. Failure loads were recorded in kilograms and failure modes were observed under light microscopy (40 x). Four-way analysis of variance and multiple comparison testing were used to compare means at the 0.05 level of significance. RESULTS: The means and standard deviations of tensile loads were calculated. All variables were significant in either main effects or interactions ( p<0.05). Fisher's PLSD intervals for post, core, treatment, and diameter were 2.0, 1.6, 1.6, and 1.6 kg, respectively. In most cases, the retentive force recorded for metallic posts was higher than that of glass fiber posts. Titanium posts had higher retentive forces than did the stainless steel posts. For metallic posts, 5-mm cores provided higher forces than 3-mm cores. In the glass fiber group, core diameter was not significant. For core materials, Build-It gave higher results with stainless steel posts, and FluoroCore gave higher results with the titanium ones. The surface treatment results were mixed. In the metallic post groups the adhesive failure data ranged between 80% and 100%, whereas in the glass fiber post groups, adhesive failures ranged between 60% and 70%. CONCLUSIONS: Within the limitations of this study, the metallic post groups always provided higher tensile retentive forces, with the titanium post groups showing higher retentive forces than the stainless steel ones. In the glass fiber post groups, different core diameters did not affect retention values.[Abstract] [Full Text] [Related] [New Search]