These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ca2+ and voltage inactivate Ca2+ channels in guinea-pig ventricular myocytes through independent mechanisms.
    Author: Hadley RW, Lederer WJ.
    Journal: J Physiol; 1991 Dec; 444():257-68. PubMed ID: 1668348.
    Abstract:
    1. L-type Ca2+ currents and Ca2+ channel gating currents were studied in isolated guinea-pig ventricular heart cells using the whole-cell patch-clamp technique, in order to investigate the mechanism of Ca(2+)-dependent inactivation. The effect of altering the intracellular Ca2+ concentration ([Ca2+]i) on these currents was studied through photorelease of intracellular Ca2+ ions using the photolabile Ca2+ chelators DM-nitrophen and nitr-5. 2. We found that step increases in [Ca2+]i produced by photorelease could either increase or decrease the L-type Ca2+ current. Specifically, Ca2+ photorelease from DM-nitrophen almost exclusively caused inactivation of the Ca2+ current. In contrast, Ca2+ photorelease from nitr-5 had a biphasic effect: a small, rapid inactivation of the Ca2+ current was followed by a slow potentiation. These two Ca(2+)-dependent processes seemed to differ in their Ca2+ dependence, as small Ca2+ photoreleases elicited potentiation without a preceding inactivation, whereas larger photoreleases elicited both inactivation and potentiation. 3. The mechanism of the Ca(2+)-dependent inactivation of Ca2+ channels was explored by comparing the effects of voltage and photoreleased Ca2+ on the Ca2+ current and the Ca2+ channel gating current. Voltage was found to reduce both the Ca2+ current and the gating current proportionally. However, Ca2+ photorelease from intracellular DM-nitrophen inactivated the Ca2+ current without having any effect on the gating current. 4. The dephosphorylation hypothesis for Ca(2+)-dependent inactivation was tested by applying isoprenaline to the cells before eliciting a maximal rise of [Ca2+]i (maximal flash intensity, zero external [Na+]i). Isoprenaline could completely prevent Ca(2+)-dependent inactivation under these conditions, even when [Ca2+]i rose so high as to cause an irreversible contracture of the cell. 5. We concluded from these experiments that voltage and Ca2+ ions inactivate the L-type Ca2+ channel through separate, independent mechanisms. In addition, we found that Ca(2+)-dependent inactivation does not result in the immobilization of gating charge, and apparently closes the Ca2+ permeation pathway through a mechanism that does not involve the voltage-sensing region of the channel. Furthermore, we found that Ca(2+)-dependent inactivation is entirely sensitive to beta-adrenergic stimulation. These facts suggest that either Ca(2+)-dependent inactivation results from Ca(2+)-dependent dephosphorylation of the Ca2+ channel, or that Ca(2+)-dependent inactivation is modulated by protein kinase A.
    [Abstract] [Full Text] [Related] [New Search]