These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Site-saturated mutagenesis of histidine 234 of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase demonstrates dual functions in cyclization and rearrangement reactions. Author: Wu TK, Liu YT, Chang CH, Yu MT, Wang HJ. Journal: J Am Chem Soc; 2006 May 17; 128(19):6414-9. PubMed ID: 16683806. Abstract: Site-saturated mutagenesis experiments were carried out on the His234 residue of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase (ERG7) to characterize its functional role in ERG7 activity and to determine its effect on the oxidosqualene cyclization/rearrangement reaction. Two novel intermediates, (13alphaH)-isomalabarica-14(26),17E,21-trien-3beta-ol and protosta-20,24-dien-3beta-ol, isolated from ERG7(H234X) mutants, provided direct mechanistic evidence for formation of the chair-boat 6-6-5 tricyclic Markovnikov cation and protosteryl cation that were assigned provisionally to the ERG7-catalyzed biosynthetic pathway. In addition, we obtained mutants that showed a complete change in product specificity from lanosterol formation to either protosta-12,24-dien-3beta-ol or parkeol production. Finally, the repeated observation of multiple abortive and/or alternative cyclization/arrangement products from various ERG7(H234X) mutants demonstrated the catalytic plasticity of the enzyme. Specifically, subtle changes in the active site affect both the stability of the cation-pi interaction and generate product diversity.[Abstract] [Full Text] [Related] [New Search]