These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Support of hMSCs transduced with TPO/FL genes to expansion of umbilical cord CD34+ cells in indirect co-culture.
    Author: Xie C, Jia B, Xiang Y, Wang L, Wang G, Huang G, McNiece IK, Wang J.
    Journal: Cell Tissue Res; 2006 Oct; 326(1):101-10. PubMed ID: 16685532.
    Abstract:
    A novel indirect co-culture system was established to support ex vivo expansion of hematopoietic progenitors in umbilical cord blood (UCB) by using thrombopoietin (TPO)/Flt-3 ligand (FL)-transduced human-marrow-derived mesenchymal stem cells (tfhMSCs) as a feeder. UCB CD34+ cells were isolated and cultured by using five culture systems in serum-containing or serum-free medium. Suitable aliquots of cultured cells were taken to monitor cell production, clonogenic activity, and long-term culture-initiating culture (LTC-IC) output. Finally, the severe-combined immunodeficient mouse (SCID) repopulating cell (SRC) assay was performed to confirm the ability of the indirect co-cultured cells from the tfhMSCs system to reconstitute long-term hematopoiesis. Results showed significant differences in the number of total nucleated cells (TNCs) among the culture systems with respect to serum-containing medium or serum-free medium during 14-day culture. In addition, on day 14, the outputs of CD34+ cells, the colony-forming units (CFUs) in culture, and the CFUs in mixed colonies containing erythroid and myeloid cells and megakaryocytes in the tfhMSC indirect co-culture system were significantly enhanced. The LTC-IC assay demonstrated that the tfhMSCs indirect co-culture system had the strongest activity. The SCID-SRC assay confirmed the extensive ability of the expanded cells from the tfhMSCs indirect co-culture systems to reconstitute long-term hematopoiesis. Furthermore, polymerase chain reaction analysis demonstrated the presence of human hematopoietic cells in the bone marrow and peripheral blood cells of non-obese diabetic/SCID mice. Thus, hMSCs transduced with TPO/FL, in combination with additive cytokines, can effectively expand hematopoietic progenitors from UCB in vitro. The tfhMSC indirect co-culture system may therefore be a suitable system for ex vivo manipulation of primitive progenitor cells under non-contact culture conditions.
    [Abstract] [Full Text] [Related] [New Search]