These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Peritoneal transport dynamics of glucose and icodextrin: the in vitro comparative studies. Author: Czyzewska K, Szary B, Grzelak T. Journal: Adv Perit Dial; 2005; 21():53-8. PubMed ID: 16686284. Abstract: We performed in vitro experiments with the isolated rabbit parietal peritoneum to evaluate the importance of fluid stirring intensification and of chemical modification of mesothelium and interstitium to the peritoneal transport of glucose and icodextrin. We used a mathematical model of mass transport to calculate the diffusive permeability coefficient, P, in centimeters per second. In control conditions (intact tissue; stirring rate: 11 mL/min), the rate of glucose (2.0 g/dL) transfer remained constant, and no differences were observed for transport from the interstitial to the mesothelial (I-->M) side of the membrane or in the opposite direction (M-->I). The value of P (+/- standard error of the mean) was 2.731 +/- 0.472 x 10(-4) cm/s. In contrast, the icodextrin (7.5 g/dL) I-->M transport rate was higher than that for M-->I (P: 0.319 +/- 0.038 x 10(-4) cm/s and 0.194 +/- 0.035 x 10(-4) cm/s respectively). Dynamics of the icodextrin M-->I transfer were constant, but I-->M increased by 50% over time. The intensification of the stirring rate increased the value of P at varying rates: the increase was greater for icodextrin than for glucose, and greater for the I-->M transport direction than for the M-->I direction for both solutes. Chemical modification (by 2.5 mmol/L sodium deoxycholate) increased glucose and icodextrin I-->M transfer a mean of 41% and 81% respectively, but increased M-->I transfer by 70% and 224% respectively. The dynamics of glucose and icodextrin peritoneal transfer in vitro are different: glucose diffusion is constant, but I-->M icodextrin transfer increases over time and is greater than M-->I transfer Fluid stirring intensification and chemical injury to the peritoneum enhance diffusion of glucose and icodextrin. Glucose and icodextrin M-->I transfer but not I-->M transfer is restricted more by tissue barriers than by stagnant fluid layers.[Abstract] [Full Text] [Related] [New Search]