These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Syntheses and structural analyses of variable-stoichiometric Au-Pt-Ni carbonyl/phosphine clusters, Pt3(Pt(1-x)Ni(x))(AuPPh3)2(mu2-CO)4(CO)(PPh3)3 and Pt2(Pt(2-y)Ni(y))(AuPPh3)2(mu2-CO)4(CO)2(PPh3)2, with ligation-induced site-specific Pt/Ni substitutional disorder within butterfly-based Pt3(Pt(1-x)Ni(x))Au2 and Pt2(Pt(2-y)Ni(y))Au2 core-geometries.
    Author: de Silva N, Nichiporuk RV, Dahl LF.
    Journal: Dalton Trans; 2006 May 21; (19):2291-300. PubMed ID: 16688317.
    Abstract:
    In ongoing attempts of directed synthesis of high-nuclearity Au-Pt carbonyl/phosphine clusters with [Ni6(CO)12]2- used as reducing agent and CO source, we have isolated and characterized two new closely related variable-stoichiometric trimetallic clusters, Pt3(Pt(1-x)Ni(x))(AuPPh3)2(mu2-CO)4(CO)(PPh3)3 (1) and Pt2(Pt(2-y)Ni(y))(AuPPh3)2(mu2-CO)4(CO)2(PPh3)2 (2). Their M4Au2 cores may be envisioned as substitutional disordered butterfly-based M4Au2 frameworks (M = Pt/Ni) formed by connections of the two basal M(B) atoms with both (Au-Au)-linked Au(PPh3) moieties. Based upon low-temperature CCD X-ray diffraction studies of eight crystals obtained from different samples, ligation-induced site-specific Pt/Ni substitutional disorder (involving formal insertion of Ni in place of Pt) in a given crystal was found to occur only at the one OC-attached basal M(B) site in 1 or at both OC-attached basal M(B) sites in 2 corresponding to a crystal composite of the Pt3(Pt(1-x)Ni(x))Au2 core in 1 or of the Pt2(Pt(2-y)Ni(y))Au2 core in 2; the Ph3P-attached M(B) site (M(B) = Pt) in 1 and two wingtip M(w) sites (M(w) = Pt) in 1 and 2 were not substitutionally disordered. The resulting variable stoichiometry of the M4Au2 core in 1 may be viewed as a crystal composite of two superimposed individual stereoisomers, Pt4(AuPPh3)2(mu2-CO)4(CO)(PPh3)3 (1a) and Pt3Ni(AuPPh3)2(mu2-CO)4(CO)(PPh3)3 (1b), in the averaged unit cell of a given crystal. Likewise, 2 represents the crystal-averaged composite of three individual stereoisomers, Pt4(AuPPh3)2(mu2-CO)4(CO)2(PPh3)2 (2a), Pt3Ni(AuPPh3)2(mu2-CO)4(CO)2(PPh3)2 (2b), and Pt2Ni2(AuPPh3)2(mu2-CO)4(CO)2(PPh3)2 (2c). Formal Ni substitution for Pt at only the basal M(B) site(s) in the four crystal composites each of 1 and 2 was found to vary widely from 17% to 79% Ni in 1 and from 21% to 95% Ni in 2. Nevertheless, reasonably close Pt/Ni occupancy factors were found within each of the four pairs of composite crystals selected from samples obtained from duplicate syntheses. Both 1 and 2 may be formally derived from the electronically equivalent classic butterfly Pt4(mu2-CO)5(PPh3)4 cluster by replacement of its bridging mu2-CO ligand spanning the basal M(B)-M(B) edge with two one-electron donating (Au-Au)-linked AuPPh3 moieties along with the substitution of a terminal CO in place of one or both M(B)-attached PPh3 ligands in 1 and 2, respectively; site-specific Pt/Ni substitutional disorder occurs only at the CO-attached M(B) sites. The variable-stoichiometric 1 and 2 re also electronically equivalent and geometrically related to the crystal-ordered butterfly-based Pt4(mu2-CO)4(PR3)4(mu3-HgX)2 clusters (R3 = Ph3, MePh2; X = CF3, Br, I).
    [Abstract] [Full Text] [Related] [New Search]