These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Improving the mixing performance of side channel type micromixers using an optimal voltage control model.
    Author: Wu CH, Yang RJ.
    Journal: Biomed Microdevices; 2006 Jun; 8(2):119-31. PubMed ID: 16688571.
    Abstract:
    Electroosmotic flow in microchannels is restricted to low Reynolds number regimes. Since the inertia forces are extremely weak in such regimes, turbulent conditions do not readily develop, and hence species mixing occurs primarily as a result of diffusion. Consequently, achieving a thorough species mixing generally relies upon the use of extended mixing channels. This paper aims to improve the mixing performance of conventional side channel type micromixers by specifying the optimal driving voltages to be applied to each channel. In the proposed approach, the driving voltages are identified by constructing a simple theoretical scheme based on a 'flow-rate-ratio' model and Kirchhoff's law. The numerical and experimental results confirm that the optimal voltage control approach provides a better mixing performance than the use of a single driving voltage gradient.
    [Abstract] [Full Text] [Related] [New Search]