These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: RhoA and p38 MAPK mediate apoptosis induced by cellular cholesterol depletion. Author: Calleros L, Lasa M, Rodríguez-Alvarez FJ, Toro MJ, Chiloeches A. Journal: Apoptosis; 2006 Jul; 11(7):1161-73. PubMed ID: 16699960. Abstract: Cholesterol is essential for cell viability, and homeostasis of cellular cholesterol is crucial to various cell functions. Here we examined the effect of cholesterol depletion on apoptosis and the mechanisms underlying this effect in NIH3T3 cells. We show that chronic cholesterol depletion achieved with lipoprotein-deficient serum (LPDS) and 25-hydroxycholesterol (25-HC) treatment resulted in a significant increase in cellular apoptosis and caspase-3 activation. This effect is not due to a deficiency of nonsterol isoprenoids, intermediate metabolites of the cholesterol biosynthetic pathway, but rather to low cholesterol levels, since addition of cholesterol together with LPDS and 25-HC nearly abolished apoptosis, whereas addition of farnesyl pyrophosphate or geranylgeranyl-pyrophosphate did not reverse the cell viability loss induced by LPDS plus 25-HC treatment. These effects were accompanied by an increase in ERK, JNK and p38 MAPK activity. However, only the inhibition of p38 MAPK with the specific inhibitor SB203580 or the overexpression of a kinase defective MKK6 resulted in a significant decrease in apoptosis and caspase-3 cleavage induced by cholesterol depletion. Furthermore, LPDS plus 25-HC increased RhoA activity, and this effect was reversed by addition of exogenous cholesterol. Finally, overexpression of the dominant negative N19RhoA inhibited p38 MAPK phosphorylation and apoptosis induced by low cholesterol levels. Together, our results demonstrate that cholesterol depletion induces apoptosis through a RhoA- and p38 MAPK-dependent mechanism.[Abstract] [Full Text] [Related] [New Search]