These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Author: Telemeco TA, Ayres C, Bowlin GL, Wnek GE, Boland ED, Cohen N, Baumgarten CM, Mathews J, Simpson DG. Journal: Acta Biomater; 2005 Jul; 1(4):377-85. PubMed ID: 16701819. Abstract: We characterize the infiltration of interstitial cells into tissue engineering scaffolds prepared with electrospun collagen, electrospun gelatin, electrospun poly(glycolic) acid (PGA), electrospun poly(lactic) acid (PLA), and an electrospun PGA/PLA co-polymer. Electrospinning conditions were optimized to produce non-woven tissue engineering scaffolds composed of individual fibrils less than 1000 nm in diameter. Each of these materials was then electrospun into a cylindrical construct with a 2 mm inside diameter with a wall thickness of 200-250 microm. Electrospun scaffolds of collagen were rapidly, and densely, infiltrated by interstitial and endothelial cells when implanted into the interstitial space of the rat vastus lateralis muscle. Functional blood vessels were evident within 7 days. In contrast, implants composed of electrospun gelatin or the bio-resorbable synthetic polymers were not infiltrated to any great extent and induced fibrosis. Our data suggests that topographical features, unique to the electrospun collagen fibril, promote cell migration and capillary formation.[Abstract] [Full Text] [Related] [New Search]