These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Circadian and homeostatic sleep regulation in morningness-eveningness. Author: Mongrain V, Carrier J, Dumont M. Journal: J Sleep Res; 2006 Jun; 15(2):162-6. PubMed ID: 16704571. Abstract: Morningness-eveningness has been associated with the entrained circadian phase. However, we recently identified morning and evening types having similar circadian phases. In this paper, we compared parameters of slow-wave activity (SWA) decay in non-rapid-eye-movement (NREM) sleep between these two subgroups to test the hypothesis that differences in the dynamics of nocturnal homeostatic sleep pressure could explain differences in sleep timing preference. Twelve morning-type subjects and 12 evening-type subjects with evening types (aged 19-34 years) selected using the Morningness-Eveningness Questionnaire were further classified according to the phase of their dim light melatonin onset (DLMO). The six morning types with the earliest DLMO were compared to the six evening types with the latest DLMO ('extreme' phases), and the six morning types with the latest DLMO were compared to the six evening types with the earliest DLMO ('intermediate' phases). Subjects slept according to their preferred sleep schedule. Spectral activity in four midline derivations (Fz, Cz, Pz, Oz) was calculated in NREM sleep and an exponential decay function was applied on SWA data averaged per sleep cycle. In the subjects with intermediate circadian phases, both initial level and decay rate of SWA in Fz were significantly higher in morning than in evening types. No difference appeared between chronotypes of extreme circadian phases. There was no correlation between individual estimates of SWA decay and DLMO. These results support the hypothesis that chronotype can originate from differences in the dissipation of sleep pressure and that homeostatic and circadian processes influence the sleep schedule preference independently.[Abstract] [Full Text] [Related] [New Search]