These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression of CD90 on keratinocyte stem/progenitor cells. Author: Nakamura Y, Muguruma Y, Yahata T, Miyatake H, Sakai D, Mochida J, Hotta T, Ando K. Journal: Br J Dermatol; 2006 Jun; 154(6):1062-70. PubMed ID: 16704635. Abstract: BACKGROUND: The identification and purification of keratinocyte stem cells (KSCs) that are capable of self-renewal and maintenance of differentiating cell populations could contribute both to our understanding of the biology of these cells, and to significant clinical applications, such as the culturing of keratinocytes for transplantation to severe burn wounds. Here, we report the detection of CD90(+) cells in cultured normal human epidermal keratinocytes and adult skin. OBJECTIVES: To investigate the biological function of CD90(+) and CD90(-) keratinocytes. METHODS: CD90(+) and CD90(-) keratinocytes were purified from adult skin and cultured keratinocytes using fluorescent activated cell sorting, and their biological abilities were analysed using both in vitro and in vivo assays. RESULTS: Flow cytometry (FCM) analysis identified approximately 18% of post-primary neonatal keratinocytes as CD90(+). However, during expansion of the culture, the expression level of CD90 rapidly decreased to about 2.5% at passage 10, while most of the keratinocytes maintained expression of alpha6 integrin. Purified CD90(+) keratinocytes demonstrated a sixfold higher cell growth rate than CD90(-) cells and the ability to form large (over 3 mm in diameter) colonies. We then quantitatively evaluated both populations using a previously described in vivo human epidermal cyst formation assay. Enhanced green fluorescent protein (EGFP)-labelled CD90(+) or CD90(-) keratinocytes were subcutaneously injected into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Six weeks after transplantation, EGFP(+) cell clusters in human epidermal cysts were evaluated using image analysis software. EGFP(+) cell cluster areas in the basal layer, derived from EGFP(+) CD90(+) cells, were eightfold larger than clusters of EGFP(+) CD90(-) cells. Furthermore, immunohistochemical staining and FCM analysis indicated that CD90 was expressed in most of the basal layer of the normal human epidermis. CONCLUSIONS: These results indicated that CD90 is a useful marker for the detection of human KSC-enriched populations in cultured human keratinocytes.[Abstract] [Full Text] [Related] [New Search]