These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chronic histological effects of the flat interface nerve electrode.
    Author: Leventhal DK, Cohen M, Durand DM.
    Journal: J Neural Eng; 2006 Jun; 3(2):102-13. PubMed ID: 16705266.
    Abstract:
    The flat interface nerve electrode (FINE) is designed to reshape peripheral nerves into favorable geometries for selective stimulation. Compared to cylindrical geometries, the ovoid geometries created by the FINE allow more space for contact placement. Furthermore, the amount of electrically excitable tissue between stimulating contacts and target axons is reduced. In this study, the nerve response to the presence of the FINE is examined histologically. Three different FINEs were designed to reshape peripheral nerves to different opening heights designated as 'wide' (1.3 mm), 'medium' (0.5 mm) and 'narrow' (0.1 mm) cuffs. Twelve adult cats were implanted with one cuff each (four in total of each design) on their right sciatic nerves. At least 3 months later, the animals were sacrificed and their sciatic nerves were harvested for histological evaluation. Cross-sectional areas and eccentricities (defined as the major axis divided by the minor axis of the closest fit ellipse to a region) of the nerves were measured to assess the degree of reshaping. The wide and medium cuff designs significantly reshaped the nerves compared to control nerves, though there was no significant difference in eccentricity between nerves implanted with wide and medium cuffs. There was extensive deposition of connective tissue in the epineurium of all nerves implanted with cuffs. No significant difference in fiber counts was measured in any of the groups studied. Only nerves implanted with narrow cuffs showed evidence of axonal injury and/or demyelination. These results, coupled with stimulation selectivity measurements made on the same animals, suggest that safe, selective electrodes can be designed with ovoid geometries. Moderate reshaping caused no damage, while extreme reshaping generated mild-to-moderate nerve damage. It might be possible, however, to redesign the cuffs to slowly reshape the nerves.
    [Abstract] [Full Text] [Related] [New Search]