These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Histone deacetylase inhibitors suppress the inducibility of nuclear factor-kappaB by tumor necrosis factor-alpha receptor-1 down-regulation. Author: Imre G, Gekeler V, Leja A, Beckers T, Boehm M. Journal: Cancer Res; 2006 May 15; 66(10):5409-18. PubMed ID: 16707469. Abstract: Recently, the inhibition of histone deacetylase (HDAC) enzymes has attracted attention in the oncologic community as a new therapeutic opportunity for hematologic and solid tumors including non-small cell lung cancer (NSCLC). In hematologic malignancies, such as diffuse large B-cell lymphoma, the HDAC inhibitor (HDI), suberoylanilide hydroxamic acid (SAHA), has recently entered phase II and III clinical trials. To further advance our understanding of their action on tumor cells, we investigated the possible effect of HDI treatment on the functionality of the nuclear factor-kappaB (NF-kappaB) pathway in NSCLC. We found that in the NSCLC cell lines, A549 and NCI-H460, the NF-kappaB pathway was strongly inducible, for example, by stimulation with tumor necrosis factor-alpha (TNF-alpha). Incubation of several NSCLC cell lines with HDIs resulted in greatly reduced gene expression of TNF-alpha receptor-1. HDI-treated A549 and NCI-H460 cells down-regulated TNF-alpha receptor-1 mRNA and protein levels as well as surface exposure, and consequently responded to TNF-alpha treatment with reduced IKK phosphorylation and activation, delayed IkappaB-alpha phosphorylation, and attenuated NF-kappaB nuclear translocation and DNA binding. Accordingly, stimulation of NF-kappaB target gene expression by TNF-alpha was strongly decreased. In addition, we observed that SAHA displayed antitumor efficacy in vivo against A549 xenografts grown on nude mice. HDIs, therefore, might beneficially contribute to tumor treatment, possibly by reducing the responsiveness of tumor cells to the TNF-alpha-mediated activation of the NF-kappaB pathway. These findings also hint at a possible use of HDIs in inflammatory diseases, which are associated with the overproduction of TNF-alpha, such as rheumatoid arthritis or Crohn's disease.[Abstract] [Full Text] [Related] [New Search]