These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Adaptation in the auditory space map of the barn owl.
    Author: Gutfreund Y, Knudsen EI.
    Journal: J Neurophysiol; 2006 Aug; 96(2):813-25. PubMed ID: 16707713.
    Abstract:
    Auditory neurons in the owl's external nucleus of the inferior colliculus (ICX) integrate information across frequency channels to create a map of auditory space. This study describes a powerful, sound-driven adaptation of unit responsiveness in the ICX and explores the implications of this adaptation for sensory processing. Adaptation in the ICX was analyzed by presenting lightly anesthetized owls with sequential pairs of dichotic noise bursts. Adaptation occurred in response even to weak, threshold-level sounds and remained strong for more than 100 ms after stimulus offset. Stimulation by one range of sound frequencies caused adaptation that generalized across the entire broad range of frequencies to which these units responded. Identical stimuli were used to test adaptation in the lateral shell of the central nucleus of the inferior colliculus (ICCls), which provides input directly to the ICX. Compared with ICX adaptation, adaptation in the ICCls was substantially weaker, shorter lasting, and far more frequency specific, suggesting that part of the adaptation observed in the ICX was attributable to processes resident to the ICX. The sharp tuning of ICX neurons to space, along with their broad tuning to frequency, allows ICX adaptation to preserve a representation of stimulus location, regardless of the frequency content of the sound. The ICX is known to be a site of visually guided auditory map plasticity. ICX adaptation could play a role in this cross-modal plasticity by providing a short-term memory of the representation of auditory localization cues that could be compared with later-arriving, visual-spatial information from bimodal stimuli.
    [Abstract] [Full Text] [Related] [New Search]