These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems.
    Author: Pivkin IV, Karniadakis GE.
    Journal: J Chem Phys; 2006 May 14; 124(18):184101. PubMed ID: 16709091.
    Abstract:
    Coarse graining of dense liquid-state systems can potentially lead to fast simulation times, thus providing an effective bridge between atomistic and continuum descriptions. Dissipative particle dynamics (DPD) is a stochastic Lagrangian method that provides a simple formal procedure for coarse graining. Here we analyze some of the fundamental modeling ideas of DPD and identify three factors that limit its application at high coarse-graining levels: interparticle force magnitude, compressibility, and geometric confinement. These artifacts lead to erroneous transport properties of highly coarse-grained DPD systems and thus incorrect dynamics in simulating complex fluids, e.g., colloids and polymers.
    [Abstract] [Full Text] [Related] [New Search]