These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of neutrophil apoptosis by beta-amyloid proteins.
    Author: Park HY, Park JI, Baek DW, Lee SY, Lee MJ, Jin JO, Kim JW, Hong YS, Lee YH, Kwak JY.
    Journal: Int Immunopharmacol; 2006 Jul; 6(7):1061-9. PubMed ID: 16714209.
    Abstract:
    This study examined the effect of amyloid beta peptide (Abeta) and the secretase inhibitors of amyloid precursor proteins (APP) on the spontaneous apoptosis of neutrophils. Abeta(1-40) decreased the apoptotic rate of neutrophils. The delayed apoptosis by Abeta was not blocked by pertussis toxin and N-formyl peptide receptor-like 1 antagonistic peptide, WRWWWW. The inhibitors of phoshoinositide 3-kinase (LY294002), phospholipase C (U73122), or Ca++-dependent protein kinase C (Go6976) abrogated the anti-apoptotic effect of Abeta on neutrophils. Moreover, the Abeta-induced delay of apoptosis was inhibited by a calcium chelator, BAPTA/AM. The amount of the APP protein was reduced in the cultured neutrophils and the APP level in the Abeta or pancaspase-treated neutrophils was lower than that in the cultured neutrophils. However, the reduction in APP level was recovered after treating them with the secretase inhibitors or anti-Fas antibody. The exogenous addition of cell permeable beta- and gamma-secretase inhibitors resulted in an increase in the rate of the apoptosis. The regulation of neutrophil apoptosis by the addition of Abeta and secretase inhibitors occurred via the caspase -8, -9, -3, and mitochondrial-dependent pathways. This suggests that the intracellular beta-amyloid proteins play a role as regulating factor of neutrophil survival and that Abeta-induced delay of apoptosis is mediated by other receptors rather than a seven-transmembrane G protein-coupled receptor(s).
    [Abstract] [Full Text] [Related] [New Search]