These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential expression and sequence conservation of the Anaplasma marginale msp2 gene superfamily outer membrane proteins.
    Author: Noh SM, Brayton KA, Knowles DP, Agnes JT, Dark MJ, Brown WC, Baszler TV, Palmer GH.
    Journal: Infect Immun; 2006 Jun; 74(6):3471-9. PubMed ID: 16714578.
    Abstract:
    Bacterial pathogens in the genera Anaplasma and Ehrlichia encode a protein superfamily, pfam01617, which includes the predominant outer membrane proteins (OMPs) of each species, major surface protein 2 (MSP2) and MSP3 of Anaplasma marginale and Anaplasma ovis, Anaplasma phagocytophilum MSP2 (p44), Ehrlichia chaffeensis p28-OMP, Ehrlichia canis p30, and Ehrlichia ruminantium MAP1, and has been shown to be involved in both antigenic variation within the mammalian host and differential expression between the mammalian and arthropod hosts. Recently, complete sequencing of the A. marginale genome has identified an expanded set of genes, designated omp1-14, encoding new members of this superfamily. Transcriptional analysis indicated that, with the exception of the three smallest open reading frames, omp2, omp3, and omp6, these superfamily genes are transcribed in A. marginale-infected erythrocytes, tick midgut and salivary glands, and the IDE8 tick cell line. OMPs 1, 4, 7 to 9, and 11 were confirmed to be expressed as proteins by A. marginale within infected erythrocytes, with expression being either markedly lower (OMPs 1, 4, and 7 to 9) or absent (OMP11) in infected tick cells, which reflected regulation at the transcript level. Although the pfam01617 superfamily includes the antigenically variable MSP2 and MSP3 surface proteins, analysis of the omp1-14 sequences throughout a cycle of acute and persistent infection in the mammalian host and tick transmission reveals a high degree of conservation, an observation supported by sequence comparisons between the St. Maries strain and Florida strain genomes.
    [Abstract] [Full Text] [Related] [New Search]