These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of adrenergic neurotransmission in isolated veins of the dog by potassium ions.
    Author: Lorenz RR, Vanhoutte PM.
    Journal: J Physiol; 1975 Mar; 246(2):479-500. PubMed ID: 167162.
    Abstract:
    1. In the intact organism, an increase in K+ concentration decreases the reactivity of blood vessels to sympathetic stimulation. The present experiments were designed to determine whether or not K+ interferes with adrenergic neurotransmission. 2. Helical strips cut from dogs' saphenous veins were incubated (4 hr) in Krebs-Ringer solution containing [7-3H]norepinephrine (5 times 10(-8) g/ml). The preparations were mounted for superfusion and isometric tension recording; the superfusate was collected for estimation of total radioactivity and for chromatographic separation of 3H-labelled norepinephrine and metabolites. 3. Supramaximal electric stimulation (5 Hz, 9 V, 2 msec) increased the tension and the [3H]norepinephrine efflux. Increasing the K+ concentration from 5-9 to 1, 15, and 20 m-equiv/l. caused a progressive depression of these contractions and diminished the total 3H efflux in proportion to the relaxation; the decrease in 3H efflux reflected a decrease in intact [3H]norepinephrine. The same increase in K+ concentration did not alter basal tension or basal 3H efflux. 4. Addition of tyramine (4 times 10(-6) g/ml. min) to the superfusate augmented both the tension and the efflux, but these actions were not depresesd by increasing the K+ concentration. 5. Cocaine, phentolamine, and phenoxybenzamine did not prevent the depression by K+ of the response to electric stimulation. 6. These experiments show that K+ causes relaxation of venous smooth muscle constricted by sympathetic stimulation and does so by inhibiting the release of norepinephrine from nerve endings. By contrast, K+ does not inhibit norepinephrine release in response to tyramine. 7. During submaximal electric stimulation (5 Hz, 1-8--3 V, 2 msec), increasing the K+ concentration from 5-9 to 10 and 15 m-equiv/l. potentiated the contractions and increased the [3H]norepinephrine efflux; at 20 m-equil/l, K+ caused transient increases in tension and 3H efflux followed by relaxation and decreased norepinephrine release. After addition of cocaine (10(-5) g/ml. min), K+ only caused relaxation and decrease in 3H efflux, showing that, in addition to inhibition of norepinephrine release, K+ also inhibits the reuptake process. 8. In higher concentrations (40 m-equil/l.), K+ caused both a liberation of norepinephrine and a direct activation of the smooth muscle cells.
    [Abstract] [Full Text] [Related] [New Search]