These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pattern differentiation of excitatory and inhibitory synaptic inputs on distinct neuronal types in the rat caudal nucleus of the tractus solitarius. Author: Yoshioka M, Okada T, Inoue K, Kawai Y. Journal: Neurosci Res; 2006 Jul; 55(3):300-15. PubMed ID: 16716422. Abstract: Region- and size-specific neuronal organizations of the caudal nucleus of the tractus solitarius (cNTS) were investigated, followed by analyses of excitatory and inhibitory synaptic input patterns onto specific cell types by patch clamp recordings and immunoelectron microscopy. Cell size distribution and numerical density of cNTS neurons were examined in subregions at levels of the area postrema. In the subpostremal and dorsomedial subnuclei, characterized by the presence of dense glutamatergic and sparse GABAergic somata, small calbindin neurons constituted 42% of the total cells. The medial subnucleus contained large numbers of glutamatergic, GABAergic, and catecholaminergic somata and large tyrosine hydroxylase-containing cells constituted 13% in this region. In total, small neurons (<150 microm2) represented about 80% of the cell population in the cNTS. Predominant excitatory postsynaptic currents were observed in the adult small neurons, while inhibitory postsynaptic currents were more evident in larger neurons, irrespective of subnuclear location. This distinct differentiation of postsynaptic current patterns was not evident in neonates. GABAergic synapses were more frequently associated with dendrites of large catecholaminergic cells (73%) than with those of small calbindin-containing cells (10%) in adults. These results indicate that differential synaptic input patterns were developmentally established in distinct small and large neurons.[Abstract] [Full Text] [Related] [New Search]