These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulatory effects of d-serine and sarcosine on NMDA receptor-mediated neurotransmission are apparent after stress in the genetically inbred BALB/c mouse strain.
    Author: Long KD, Mastropaolo J, Rosse RB, Manaye KF, Deutsch SI.
    Journal: Brain Res Bull; 2006 May 31; 69(6):626-30. PubMed ID: 16716829.
    Abstract:
    Abnormalities of NMDA receptor-mediated neurotransmission are involved in the pathophysiology of schizophrenia, Alzheimer's disease, substance abuse and seizure disorders. The NMDA receptor is implicated in schizophrenia because phencyclidine (PCP), a noncompetitive NMDA receptor antagonist, binds to a hydrophobic domain within the channel, precipitating a schizophreniform psychosis in susceptible persons. Pharmacological, environmental, and genetic variables alter NMDA receptor-mediated neurotransmission. Inbred mouse strains differ in their sensitivity to some of the behavioral effects of MK-801 (dizocilpine), a PCP analogue. The NMDA receptor complex in the BALB/c strain could reflect a unique stoichiometric combination of receptor subunits resulting in a higher proportion of the channels in the open configuration, a higher affinity of MK-801 for its hydrophobic channel domain, and/or a combination of the above. The BALB/c mouse strain, "stressed" mice, and behavioral consequences of MK-801 administration represent models of altered glutamatergic neural transmission. We were interested in examining the effect of stress on the modulatory properties of d-serine and sarcosine. d-Serine is a naturally occurring glycine agonist that modulates the ability of l-glutamate to influence the opening of the NMDA receptor-associated ionophore, and sarcosine is a naturally occurring glycine reuptake inhibitor. The data suggest that 24h after stress, d-serine and sarcosine interact synergistically to reduce MK-801's ability to antagonize electrically precipitated tonic hindlimb extension. Under conditions of stress, modulatory effects of d-serine and sarcosine on the antiseizure effect of MK-801 are observed that are not apparent in the nonstress condition. The results could be relevant to the development of glycinergic interventions for the treatment of neuropsychiatric disorders.
    [Abstract] [Full Text] [Related] [New Search]