These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural damage to meiotic chromosomes impairs DNA recombination and checkpoint control in mammalian oocytes.
    Author: Wang H, Höög C.
    Journal: J Cell Biol; 2006 May 22; 173(4):485-95. PubMed ID: 16717125.
    Abstract:
    Meiosis in human oocytes is a highly error-prone process with profound effects on germ cell and embryo development. The synaptonemal complex protein 3 (SYCP3) transiently supports the structural organization of the meiotic chromosome axis. Offspring derived from murine Sycp3(-)(/)(-) females die in utero as a result of aneuploidy. We studied the nature of the proximal chromosomal defects that give rise to aneuploidy in Sycp3(-)(/)(-) oocytes and how these errors evade meiotic quality control mechanisms. We show that DNA double-stranded breaks are inefficiently repaired in Sycp3(-)(/)(-) oocytes, thereby generating a temporal spectrum of recombination errors. This is indicated by a strong residual gammaH2AX labeling retained at late meiotic stages in mutant oocytes and an increased persistence of recombination-related proteins associated with meiotic chromosomes. Although a majority of the mutant oocytes are rapidly eliminated at early postnatal development, a subset with a small number of unfinished crossovers evades the DNA damage checkpoint, resulting in the formation of aneuploid gametes.
    [Abstract] [Full Text] [Related] [New Search]