These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quantitative analysis of the pathways of glycogen repletion in periportal and perivenous hepatocytes in vivo.
    Author: Cline GW, Shulman GI.
    Journal: J Biol Chem; 1991 Mar 05; 266(7):4094-8. PubMed ID: 1671859.
    Abstract:
    In order to examine the pathways of hepatic glycogen repletion in the periportal and perivenous zones of the liver, [1-13C]glucose (99% enriched) was infused intraduodenally into conscious, 24-h fasted rats for 3 h. The liver was then quickly perfused in situ, and the cytoplasmic contents of the periportal and perivenous hepatocytes were selectively sampled by modification of the dual-digitonin-pulse technique (Quistorff, B., and Grunnet, N. (1987) Biochem. J. 243, 87-95). The 13C isotopic enrichment at each carbon position of the glucosyl units of hepatic glycogen was determined by 13C NMR and that of the C-1 position by gas chromatography-mass spectroscopy. From comparison of hepatic glycogen repleted by direct incorporation of plasma glucose (glucose----glucose-6-P----glucose-1-P----UDP-glucose----glycogen) was calculated to be 29% in the periportal zone and 35% in the perivenous zone, assuming equal glycogen synthetic rates within the two zones. Thus, the majority of glycogen is derived by an indirect route (glucose--------3-carbon unit--------glucose --------UDP-glucose--------glycogen) in both the periportal zone and in the perivenous zone. In conclusion, in a 24-h fasted rat there does not appear to be a major difference between the periportal and perivenous hepatocytes in the percent of glycogen synthesized by the direct pathway following a glucose load.
    [Abstract] [Full Text] [Related] [New Search]