These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simulation of electroporated cell by chronopotentiometry.
    Author: Kalinowski S, Koronkiewicz S, Kotulska M, Kubica K.
    Journal: Bioelectrochemistry; 2007 Jan; 70(1):83-90. PubMed ID: 16720110.
    Abstract:
    Chronopotentiometry on planar lipid bilayer (BLM) is proposed as a method for modeling the electrical phenomena in electroporated cell. Two techniques are discussed: constant-current and linear-current chronopotentiometry. It is proposed that the constant-current chronopotentiometry may provide basis for modeling the electroporated cell shortly after the removal of the electric field, when activity of cellular pumps counteracts ionic fluxes through the electropore and ionic channels. The linear-current method can be considered for modeling the cell in the later stage after electroporation, when energetical resources of the cell are gradually getting exhausted and the activity of pumps decreases. Based on this idea, it may be postulated that the electropore in the cell has fluctuating dynamics whose stochastic characteristics, similarly as biological channels, shows 1/f noise. The model implies that the fluctuations would disappear leaving the electropore with a constant resistance when efficiency of the pumps becomes very small. The results of chronopotentiometry also may suggest that opening time, conductivity and selectivity of the electropore can be controlled by the cell environment or membrane composition.
    [Abstract] [Full Text] [Related] [New Search]