These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A developmental switch in transcription factor isoforms during spermatogenesis controlled by alternative messenger RNA 3'-end formation.
    Author: Wang H, Sartini BL, Millette CF, Kilpatrick DL.
    Journal: Biol Reprod; 2006 Sep; 75(3):318-23. PubMed ID: 16723505.
    Abstract:
    Spermatogeniccells elaborate a highly specialized differentiation program that is mediated in part by germ cell-enriched transcription factors. This includes a novel member of the sterol response element-binding factor family, SREBF2_v1/SREBP2gc. Somatic SREBFs are predominantly synthesized as precursor proteins and are critical regulators of cholesterol and fatty acid synthesis. In contrast, SREBF2_v1 bypasses the precursor pathway and has been directly implicated in spermatogenic cell-specific gene expression. During spermatogenesis, SREBF2 precursor transcripts predominate in premeiotic stages, while SREBF2_v1 is highly upregulated specifically in pachytene spermatocytes and round spermatids. In the present study, we demonstrate thatSrebf2_v1mRNAs are present in the testis of several mammalian species, including humans. The basis for the stage-dependent transition in SREBF2 isoforms was also investigated. A 3' rapid amplification of cDNA ends (RACE)-PCR analysis of the rat and human revealed thatSrebf2_v1transcripts are generated by alternative pre-mRNA cleavage/polyadenylation. This involves the use of an intronic, A(A/U)UAAA-independent poly(A) signal within intron 7 of theSrebf2gene. Developmentally regulated competition between germ cell factors that control RNA splicing and pre-mRNA cleavage/polyadenylation may underlie this process. These results define an important role for alternative polyadenylation in male germ cell gene expression and development by controlling a stage-dependent switch in transcription factor structure and function during spermatogenesis. TheSrebf2gene thus provides a useful model to explore the role of alternative polyadenylation in regulating stage-dependent functions of important protein regulators in spermatogenic cells.
    [Abstract] [Full Text] [Related] [New Search]