These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation. Author: Hlushchuk Y, Hari R. Journal: J Neurosci; 2006 May 24; 26(21):5819-24. PubMed ID: 16723540. Abstract: The whole human primary somatosensory (SI) cortex is activated by contralateral tactile stimuli, whereas its subarea 2 displays neuronal responses also to ipsilateral stimuli. Here we report on a transient deactivation of area 3b of the ipsilateral SI during long-lasting tactile stimulation. We collected functional magnetic resonance imaging data with a 3 T scanner from 10 healthy adult subjects while tactile pulses were delivered at 1, 4, or 10 Hz in 25 s blocks to three right-hand fingers. In the contralateral SI cortex, activation [positive blood oxygenation level-dependent (BOLD) response] outlasted the stimulus blocks by 20 s, with an average duration of 45 s. In contrast, a transient deactivation (negative BOLD response) occurred in the ipsilateral rolandic cortex with an average duration of 18 s. Additional recordings on 10 subjects confirmed that the deactivation was not limited to the right SI but occurred in the SI cortex ipsilateral to the stimulated hand. Moreover, the primary motor cortex (MI) contained voxels that were phasically deactivated in response to both ipsilateral and contralateral touch. These data indicate that unilateral touch of fingers is associated, in addition to the well known activation of the contralateral SI cortex, with deactivation of the ipsilateral SI cortex and of the MI cortex of both hemispheres. The ipsilateral SI deactivation could result from transcallosal inhibition, whereas intracortical SI-MI connections could be responsible for the MI deactivation. The shorter time course of deactivation than activation would agree with stronger decay of inhibitory than EPSP at the applied stimulus repetition rates.[Abstract] [Full Text] [Related] [New Search]