These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Analysis of the loading and hydroxylation steps in lankamycin biosynthesis in Streptomyces rochei.
    Author: Arakawa K, Kodama K, Tatsuno S, Ide S, Kinashi H.
    Journal: Antimicrob Agents Chemother; 2006 Jun; 50(6):1946-52. PubMed ID: 16723550.
    Abstract:
    The biosynthetic gene cluster of lankamycin (LM), a 14-member macrolide antibiotic, is encoded on the 210-kb linear plasmid pSLA2-L in Streptomyces rochei 7434AN4. LM contains a 3-hydroxy-2-butyl group at the C-13 position, which is different from an ethyl group in erythromycin. The following two possibilities could be considered for the origin of this starter moiety of LM biosynthesis: (i) an extra module exists in the biosynthetic gene cluster and loads an additional acetate molecule, or (ii) 3-hydroxy-2-butyrate or its equivalent is loaded and incorporated as a starter. The former possibility was eliminated by the complete sequencing of pSLA2-L, which showed no extra module. On the other hand, the latter was confirmed by incorporation of deuterium in [3-(2)H]dl-isoleucine into the C-14 position of LM. The timing of hydroxylation reactions at the C-15 and C-8 positions of LM was studied by constructing disruptants of two P450 hydroxylase genes, lkmF (orf26) and lkmK (orf37). The lkmF disruptant produced 8-deoxylankamycin, while the lkmK disruptant produced both 15-deoxylankamycin and 8,15-dideoxylankamycin. These results clearly showed that LkmF is a C-8 hydroxylase and LkmK is a C-15 hydroxylase in LM biosynthesis and in addition suggested the order of hydroxylation steps; namely, hydroxylation may occur at first at C-15 by LkmK and then at C-8 by LkmF.
    [Abstract] [Full Text] [Related] [New Search]